A Quantum Version of the Algebra of Distributions of SL_{2}

by
Iván Angiono

Abstract

Let λ be a primitive root of unity of order ℓ. We introduce a family of finite-dimensional algebras $\left\{\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)\right\}_{N \in \mathbb{N}_{0}}$ over the complex numbers, such that $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is a subalgebra of $\mathcal{D}_{\lambda, M}\left(\mathfrak{s l}_{2}\right)$ if $N<M$, and $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right) \subset \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is a $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-cleft extension.

The simple $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-modules $\left(\mathcal{L}_{N}(p)\right)_{0 \leq p<\ell^{N+1}}$ are highest weight modules, which admit a tensor product decomposition: the first factor is a simple $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-module and the second factor is a simple $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{S l}_{2}\right)$-module. This factorization resembles the corresponding Steinberg decomposition, and the family of algebras resembles the presentation of the algebra of distributions of SL_{2} as a filtration by finite-dimensional subalgebras.

2010 Mathematics Subject Classification: 14L17, 16T05, 20 G 15.
Keywords: Pointed Hopf algebras, Frobenius-Lusztig kernels, algebras of distributions.

§1. Introduction

A difficult question regarding the simple modules over a simple, simply connected algebraic group G over an algebraically closed field of positive characteristic \mathbb{k} is to find an explicit formula for their characters. A formula involving the action of the corresponding affine Weyl group was proposed by Lusztig [L1] in 1980. Subsequently this formula was shown to hold in large characteristic by the combined efforts of Kazhdan-Lusztig, Kashiwara-Tanisaki, Lusztig and Andersen-JantzenSoergel. More recently, Williamson [W1] found many counterexamples to the expected bounds in this conjecture. A different approach to a character formula with emphasis in the Steinberg decomposition for algebraic groups is given in [L4].

Around 1990, Lusztig started to study quantum groups $U_{\lambda}(\mathfrak{g})$ at a primitive root of unity λ of order ℓ in order to have algebras over the complex numbers whose

Communicated by H. Nakajima. Received February 3, 2017. Revised May 26, 2017.
I. Angiono: FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria (5000) Córdoba, Argentina;
e-mail: angiono@famaf.unc.edu.ar
representation theory resembles those of simply connected semisimple algebraic groups over algebraically closed fields of positive characteristic. In particular, he conjectured a similar formula for the character of simple modules [L2], which holds in this case by a hard proof of Kazhdan-Lusztig. A remarkable fact about $U_{\lambda}(\mathfrak{g})$ is that it fits into a Hopf algebra extension of the corresponding small quantum group $\mathfrak{u}_{\lambda}(\mathfrak{g})$ by the enveloping algebra $U(\mathfrak{g})$; each simple module satisfies a kind of Steinberg decomposition: it is written as the tensor product of a simple module of $\mathfrak{u}_{\lambda}(\mathfrak{g})$ with a simple module $U(\mathfrak{g})$, viewed as a $U_{\lambda}(\mathfrak{g})$-module via a (kind of) Frobenius map.

A fundamental difference, however, between the representation theory of the algebraic group and the corresponding quantum group at a root of unity is the form of the Steinberg (respectively Lusztig) tensor product theorem: for the algebraic group, the theorem involves an arbitrary number of iterations of the Frobenius twist, whereas for the quantum group, only one Frobenius twist occurs. It has been proposed by Soergel and Lusztig that there might exist analogues of the quantum group that parallel to a greater and greater extent the representation theory of the algebraic group. Such an object has the potential to deepen our understanding of the representation theory of algebraic groups [W2].

The purpose of this paper is to propose such an object for $\mathfrak{s l}_{2}$. More precisely, we introduce a family of finite-dimensional algebras $\left\{\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)\right\}_{N \in \mathbb{N}_{0}}$ over the complex numbers to mimic the filtration of the algebra of distributions of SL_{2} as a filtration by finite-dimensional subalgebras. This filtration is deeply motivated by the approach proposed in [L4]. The main objective is to find a \mathbb{C}-algebra whose representation category behaves as those of simple simply connected algebraic groups over algebraically closed fields of positive characteristic, even more similar than $U_{\lambda}(\mathfrak{g})$.
\diamond Each algebra $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is presented by generators and relations; the relations in Definition 3.2 resemble those defining finite-dimensional subalgebras of the algebra of distributions of SL_{2} [T1].
\diamond The first step corresponds to the small quantum group: $\mathcal{D}_{\lambda, 0}\left(\mathfrak{s l}_{2}\right) \simeq \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$. If $M<N$, then $\mathcal{D}_{\lambda, M}\left(\mathfrak{s l}_{2}\right)$ is a subalgebra of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$, and at the same time there exists a surjective map $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{D}_{\lambda, M}\left(\mathfrak{s l}_{2}\right)$; see Lemma 3.4. Thus there exists a surjective map $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$, a kind of Frobenius map.
\diamond For the algebra of distributions, there exist extensions of Hopf algebras between consecutive terms of a filtration by (finite-dimensional) Hopf subalgebras; see Proposition 2.6. In this case, $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right) \subset \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is a $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-cleft extension for all $N \in \mathbb{N}$; see Proposition 3.8.
\diamond Each $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ admits a triangular decomposition into a positive, a zero and a negative part; see Proposition 3.9. Reasonably, each simple module is a highest weight module; see Proposition 4.5.
\diamond Each simple $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module admits a Steinberg decomposition as the tensor product of a simple $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$-module and a simple $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-module as stated in Theorem 4.10.

The next step is to define families of algebras $\mathcal{D}_{\lambda, N}(\mathfrak{g})$ for any semisimple Lie algebra $\mathfrak{g}[\mathrm{An}]$. This will be the content of a forthcoming paper, where the first step includes the definition of Lusztig's isomorphisms at level N, that is, to consider Lusztig's isomorphisms for small quantum groups, which induce maps for $\mathcal{D}_{\lambda, N}(\mathfrak{g})$. Hence $\mathfrak{s l}_{2}$ is a key step to prove the existence of a PBW basis labeled by the roots of \mathfrak{g}. As the simple modules of these algebras satisfy a Steinberg tensor product decomposition, we hope to attack the modular case from the approach established by Lusztig in [L4].

§1.1. Notation

Let H be a Hopf algebra with counit ϵ and antipode \mathcal{S}. Then H^{+}is the augmentation ideal, i.e., the kernel of ϵ. The left adjoint action of H on itself is $\operatorname{Ad}(a) b=a_{1} b \mathcal{S}\left(a_{2}\right), a, b \in H$. A Hopf subalgebra A is (left) normal if it is stable by the (left) adjoint action. Given $\pi: H \rightarrow K$ a Hopf algebra map,

$$
\begin{aligned}
& H^{\mathrm{co} \pi}=\{h \in H:(\mathrm{id} \otimes \pi) \Delta(h)=h \otimes 1\} \\
& \operatorname{co\pi } H=\{h \in H:(\pi \otimes \mathrm{id}) \Delta(h)=1 \otimes h\}
\end{aligned}
$$

are the sets of left, respectively right, coinvariant elements.
Let A be a right H-comodule algebra, that is, an H-comodule such that the coaction map $\rho: A \rightarrow A \otimes H$ is an algebra map. Let

$$
B:=A^{\operatorname{co} H}=\{a \in A: \rho(h)=a \otimes 1\}
$$

the subalgebra of coinvariant elements. Then $B \subset A$ is a cleft extension if there exists an H-collinear convolution-invertible map $\gamma: H \rightarrow A$; we refer to [Mo, Section 7] for more information.

A sequence of Hopf algebra maps

$$
\mathbb{k} \longrightarrow A \xrightarrow{\iota} C \xrightarrow{\pi} B \longrightarrow \mathbb{k}
$$

is exact $[\mathrm{A}, \mathrm{AD}]$ if the following conditions hold:

$$
\iota \text { is injective, } \quad \pi \text { is surjective, } \quad \operatorname{ker} \pi=C \iota\left(A^{+}\right), \quad \iota(A)=C^{\mathrm{co} \pi} .
$$

§2. Algebras of distributions of reductive groups

Let \mathbb{k} be an algebraically closed field, $p=$ char \mathbb{k}. Let G be a simply connected semisimple algebraic group with Cartan matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq \theta}, \mathfrak{g}=$ Lie G. Following [J, Chap. 7]. we recall some definitions concerning algebraic groups. Then we give some results that illustrate those results we want to mimic for the quantum counterpart studied later.

§2.1. The algebra of distributions

Let $I_{e}=\{f \in \mathbb{k}[G] \mid f(e)=0\}$. A distribution on G (with support on e) of order $n \in \mathbb{N}_{0}$ is a linear map $\mu: \mathbb{k}[G] \rightarrow \mathbb{k}$ such that $\mu_{\mid I_{e}^{n+1}} \equiv 0$. Let $\operatorname{Dist}_{n} G$ be the set of all distributions of order n, which is a \mathbb{k}-vector space. Now

$$
\operatorname{Dist} G=\bigcup_{n \geq 0} \operatorname{Dist}_{n} G=\left\{\mu \in \mathbb{K}[G]^{*} \mid \mu_{\mid I_{e}^{n+1}} \equiv 0 \text { for some } n \in \mathbb{N}\right\}
$$

is the set of all distributions, which is a $\mathbb{k}[G]$-module. Then Dist G is a Hopf subalgebra of $\mathbb{k}[G]^{*}$, called the algebra of distributions (or the hyperalgebra) of G. As algebra and coalgebra, it is filtered:

$$
\operatorname{Dist}_{m} G \cdot \operatorname{Dist}_{n} G \subset \operatorname{Dist}_{m+n} G \quad \text { for all } m, n \in \mathbb{N}_{0} .
$$

We describe now two basic examples. We refer to $[J, 7.8]$ for more details.
Example 2.1. Let $G=G_{a}$ (the additive group, which is the spectrum of $\left.\mathbb{k}[t]\right)$. For each $n \in \mathbb{N}_{0}$ we set $\gamma_{n} \in \mathbb{k}\left[G_{a}\right]^{*}$ as the function such that $\gamma_{n}\left(t^{m}\right)=\delta_{n, m}$ for all $m \in \mathbb{N}_{0}$. Then $\left(\gamma_{n}\right)_{n \in \mathbb{N}_{0}}$ is a basis of $\operatorname{Dist} G_{a}$, and

$$
\gamma_{m} \gamma_{n}=\binom{m+n}{m} \gamma_{m+n} \quad \text { for all } m, n \in \mathbb{N}_{0}
$$

In particular, $\gamma_{1}^{p}=p!\gamma_{p}=0$.
Example 2.2. Let $G=G_{m}$ (the multiplicative group, which is the spectrum of $\left.\mathbb{k}\left[t, t^{-1}\right]\right)$. For each $n \in \mathbb{N}_{0}$ we set $\varpi_{n} \in \mathbb{k}\left[G_{a}\right]^{*}$ as the function such that $\varpi_{n}\left((t-1)^{m}\right)=\delta_{n, m}$ for all $m \leq n, \varpi_{n}\left(I_{e}^{n+1}\right)=0$. Then $\left(\varpi_{n}\right)_{n \in \mathbb{N}_{0}}$ is a basis of Dist G_{m}, and the multiplication satisfies

$$
\varpi_{m} \varpi_{n}=\sum_{i=0}^{\min \{m, n\}} \frac{(m+n-i)!}{(m-i)!(n-i!i!)} \varpi_{m+n-1} \quad \text { for all } m, n \in \mathbb{N}_{0}
$$

By [T1], the algebra Dist G is presented by generators $H_{i}^{(n)}, X_{i}^{(n)}, Y_{i}^{(n)}, 1 \leq$ $i \leq \theta, n \in \mathbb{N}_{0}$, where $H_{i}^{(0)}=X_{i}^{(0)}=Y_{i}^{(0)}=1$, and relations

$$
\begin{equation*}
H_{i}(t) H_{i}(u)=H_{i}(t+u+t u) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
H_{i}(t) H_{j}(u) & =H_{j}(u) H_{i}(t), \tag{2}\\
X_{i}(t) X_{i}(u) & =X_{i}(t+u), \tag{3}\\
Y_{i}(t) Y_{i}(u) & =Y_{i}(t+u), \tag{4}\\
X_{i}(t) Y_{i}(u) & =Y_{i}\left(\frac{u}{1+t u}\right) H_{i}(t u) X_{i}\left(\frac{t}{1+t u}\right), \tag{5}\\
X_{i}(t) Y_{j}(u) & =Y_{j}(u) X_{i}(t), \tag{6}\\
H_{i}(t) X_{j}(u) & =X_{j}\left((1+t)^{a_{i j}} u\right) H_{i}(t), \tag{7}\\
H_{i}(t) Y_{j}(u) & =Y_{j}\left((1+t)^{-a_{i j}} u\right) H_{i}(t), \tag{8}\\
\operatorname{ad}\left(X_{i}^{(n)}\right)\left(X_{j}^{(m)}\right) & =\sum_{k=0}^{n}(-1)^{k} X_{i}^{(n-k)} X_{j}^{(m)} X_{i}^{(k)}=0, \quad n>-m a_{i j}, \tag{9}\\
\operatorname{ad}\left(Y_{i}^{(n)}\right)\left(Y_{j}^{(m)}\right) & =\sum_{k=0}^{n}(-1)^{k} Y_{i}^{(n-k)} Y_{j}^{(m)} Y_{i}^{(k)}=0, \quad n>-m a_{i j}, \tag{10}
\end{align*}
$$

for $1 \leq i \neq j \leq \theta$, where we consider the following elements of Dist $G[[t]]$:

$$
H_{i}(t)=\sum_{n=0}^{\infty} t^{n} H_{i}^{(n)}, \quad X_{i}(t)=\sum_{n=0}^{\infty} t^{n} X_{i}^{(n)}, \quad Y_{i}(t)=\sum_{n=0}^{\infty} t^{n} Y_{i}^{(n)}
$$

From (2) we have $H_{i}^{(m)} H_{j}^{(n)}=H_{j}^{(n)} H_{i}^{(m)}$ for $i \neq j$, and from (1),

$$
\begin{equation*}
H_{i}^{(m)} H_{i}^{(n)}=\sum_{\ell=0}^{\min \{m, n\}}\binom{m+n-\ell}{m}\binom{m}{\ell} H_{i}^{(m+n-\ell)} . \tag{11}
\end{equation*}
$$

From (3) and (4),

$$
\begin{equation*}
X_{i}^{(m)} X_{i}^{(n)}=\binom{m+n}{m} X_{i}^{(m+n)}, \quad Y_{i}^{(m)} Y_{i}^{(n)}=\binom{m+n}{m} Y_{i}^{(m+n)} \tag{12}
\end{equation*}
$$

From these formulas, the $H_{i}^{(n)}$,s generate a copy of Dist G_{m}, while the $X_{i}^{(n)}$,s, as well as the $Y_{i}^{(n)}$'s, generate a copy of Dist G_{a}; see Examples 2.1 and 2.2.

From (6) we have $X_{i}^{(m)} Y_{j}^{(n)}=Y_{j}^{(n)} X_{i}^{(m)}$ for $i \neq j$, and from (5),

$$
\begin{aligned}
\sum_{n, m} t^{n} u^{m} X_{i}^{(n)} Y_{i}^{(m)} & =\sum_{a, b, c} \frac{u^{a+b} t^{b+c}}{(1+t u)^{a+c}} Y_{i}^{(a)} H_{i}^{(b)} X_{i}^{(c)} \\
& =\sum_{a, b, c, d}(-1)^{d}\binom{a+c+d}{d} u^{a+b+d} t^{b+c+d} Y_{i}^{(a)} H_{i}^{(b)} X_{i}^{(c)}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
X_{i}^{(n)} Y_{i}^{(m)}=\sum_{\ell=0}^{\min \{m, n\}} \sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{m+n-\ell-k}{\ell-k} Y_{i}^{(m-\ell)} H_{i}^{(k)} X_{i}^{(n-\ell)} . \tag{13}
\end{equation*}
$$

A particular case of this formula is

$$
\begin{equation*}
\left[X_{i}^{\left(p^{n}\right)}, Y_{i}^{\left(p^{m}\right)}\right]=\sum_{\ell=1}^{\min \left\{p^{m}, p^{n}\right\}} Y_{i}^{\left(p^{m}-\ell\right)}\left(\sum_{k=0}^{\ell}\binom{\ell+k}{\ell-k} H_{i}^{(k)}\right) X_{i}^{\left(p^{n}-\ell\right)} \tag{14}
\end{equation*}
$$

From (7) and (8) we have

$$
\begin{equation*}
\left[H_{i}^{\left(p^{m}\right)}, X_{j}^{\left(p^{n}\right)}\right]=\delta_{n, m} a_{i j} X_{i}^{\left(p^{n}\right)}, \quad\left[H_{i}^{\left(p^{m}\right)}, Y_{j}^{\left(p^{n}\right)}\right]=-\delta_{n, m} a_{i j} Y_{i}^{\left(p^{n}\right)} \tag{15}
\end{equation*}
$$

§2.2. Hopf algebra extensions from $\operatorname{Dist} G$

Let $\mathcal{D}_{n} G:=\operatorname{Dist}_{p^{n}} G$. As a consequence of these formulas we have the following result.

Lemma 2.3. For all $n \in \mathbb{N}, \mathcal{D}_{n} G$ is a normal Hopf subalgebra of $\mathcal{D}_{n+1} G$.
Proof. Since $\mathcal{D}_{n+1} G$ is generated as an algebra by $X_{i}^{\left(p^{k}\right)}, Y_{i}^{\left(p^{k}\right)}, H_{i}^{\left(p^{k}\right)}, 0 \leq k \leq n$, it is enough to prove that $\mathcal{D}_{n} G$ is stable by the adjoint action of $X_{i}^{\left(p^{n}\right)}, Y_{i}^{\left(p^{n}\right)}, H_{i}^{\left(p^{n}\right)}$ since the remaining generators belong to $\mathcal{D}_{n} G$, and $\mathcal{D}_{n} G$ is a Hopf subalgebra.

As $X_{i}^{\left(p^{n}\right)}$ is primitive, $\operatorname{Ad} X_{i}^{\left(p^{n}\right)}=\operatorname{ad} X_{i}^{\left(p^{n}\right)}$. If $m<n$, then $\operatorname{ad}\left(X_{i}^{\left(p^{n}\right)}\right) Y_{i}^{\left(p^{m}\right)}$, $\operatorname{ad}\left(X_{i}^{\left(p^{n}\right)}\right) H_{i}^{\left(p^{m}\right)} \in \mathcal{D}_{n} G$, and $\operatorname{ad}\left(X_{i}^{\left(p^{n}\right)}\right) X_{i}^{\left(p^{m}\right)}=0$. Let $j \neq i$. Note that $\operatorname{ad}\left(X_{i}^{\left(p^{n}\right)}\right) X_{j}^{\left(p^{m}\right)}=\operatorname{ad}\left(X_{i}^{\left(p^{n}\right)}\right) Y_{j}^{\left(p^{m}\right)}=0$ since they commute, and from (15), $\operatorname{ad}\left(X_{i}^{\left(p^{n}\right)}\right) H_{j}^{\left(p^{m}\right)}=0$. Therefore $\operatorname{ad}\left(X_{i}^{\left(p^{n}\right)}\right) \mathcal{D}_{n} G \subset \mathcal{D}_{n} G$. Analogous computations show that $\operatorname{ad}\left(Y_{i}^{\left(p^{n}\right)}\right) \mathcal{D}_{n} G, \operatorname{ad}\left(H_{i}^{\left(p^{n}\right)}\right) \mathcal{D}_{n} G \subset \mathcal{D}_{n} G$.

Now define $\pi_{k}: \mathcal{D}_{k+1} G \rightarrow \mathcal{D}_{1} G=\mathrm{U}^{[p]}(\mathfrak{g})$ as

$$
\begin{gather*}
\pi_{k}\left(X_{i}^{(n)}\right)=\left\{\begin{array}{ll}
X_{i}^{\left(n^{\prime}\right)} & \text { if } n=p^{k} n^{\prime}, \\
0 & \text { otherwise },
\end{array} \quad \pi_{k}\left(H_{i}^{(n)}\right)= \begin{cases}H_{i}^{\left(n^{\prime}\right)} & \text { if } n=p^{k} n^{\prime} \\
0 & \text { otherwise }\end{cases} \right. \tag{16}\\
\pi_{k}\left(Y_{i}^{(n)}\right)= \begin{cases}Y_{i}^{\left(n^{\prime}\right)} & \text { if } n=p^{k} n^{\prime} \\
0 & \text { otherwise }\end{cases}
\end{gather*}
$$

Remark 2.4. Let $n<p^{k+1}, 0<t<p$. If p^{k} does not divide n, then $\binom{p^{k} t}{n}=0$, otherwise $n=p^{k} n^{\prime}$ and $\binom{p^{k} t}{n}=\binom{t}{n^{\prime}}$ by Lucas' theorem.

Lemma 2.5. The Hopf algebra map π_{k} is a surjective Hopf algebra map.

Proof. First we have to check that π_{k} is well defined, i.e., that the map defined from the free algebra on generators $X_{i}^{(n)}, Y_{i}^{(n)}$ and $H_{i}^{(n)}$ annihilates the defining relations. We check easily that for all $i \neq j$, and $m, n \in \mathbb{N}_{0}$,

$$
\pi_{k}\left(H_{i}^{(m)} H_{j}^{(n)}-H_{j}^{(n)} H_{i}^{(m)}\right)=\pi_{k}\left(X_{i}^{(m)} Y_{j}^{(n)}-Y_{j}^{(n)} X_{i}^{(m)}\right)=0
$$

For (11), π_{k} annihilates both sides of the equation if p^{k} does not divide m, since either $\pi_{k}\left(H_{i}^{(m+n-\ell)}\right)=0$ or $\binom{m+n-\ell}{m}=0$. Now set $m=p^{k} m^{\prime}, n=p^{k} n^{\prime}$

$$
\begin{aligned}
H_{i}^{(m)} H_{i}^{(n)} & =\sum_{\ell=0}^{\min \{m, n\}}\binom{m+n-\ell}{m}\binom{m}{\ell} H_{i}^{(m+n-\ell)} \\
& =\sum_{\ell^{\prime}=0}^{\min \left\{m^{\prime}, n^{\prime}\right\}}\binom{p^{k}\left(m^{\prime}+n^{\prime}-\ell^{\prime}\right)}{p^{k} m^{\prime}}\binom{p^{k} m^{\prime}}{p^{k} \ell^{\prime}} H_{i}^{\left(p^{k}\left(m^{\prime}+n^{\prime}-\ell^{\prime}\right)\right)} \\
& =\sum_{\ell^{\prime}=0}^{\min \left\{m^{\prime}, n^{\prime}\right\}}\binom{m^{\prime}+n^{\prime}-\ell^{\prime}}{m^{\prime}}\binom{m^{\prime}}{\ell^{\prime}} H_{i}^{\left(p^{k}\left(m^{\prime}+n^{\prime}-\ell^{\prime}\right)\right)},
\end{aligned}
$$

since $\binom{m}{\ell}=0$ when p^{k} does not divide ℓ, so π_{k} applies (11) to 0 .
For (12), if p^{k} does not divide $m+n$, then both sides of the equality are annihilated by π_{k}. If p^{k} divides $m+n$ but does not divide m, then again π_{k} annihilates both sides of (12) since $\binom{m+n}{m} \equiv 0(\bmod p)$. Finally, if p^{k} divides m and n, then $m=p^{k} m^{\prime}, n=p^{k} n^{\prime}$ and

$$
\begin{aligned}
\pi_{k}\left(X_{i}^{(m)} X_{i}^{(n)}-\binom{m+n}{m} X_{i}^{(m+n)}\right) & =X_{i}^{\left(m^{\prime}\right)} X_{i}^{\left(n^{\prime}\right)}-\binom{p^{k}\left(m^{\prime}+n^{\prime}\right)}{p^{k} m^{\prime}} X_{i}^{\left(m^{\prime}+n^{\prime}\right)} \\
& =X_{i}^{\left(m^{\prime}\right)} X_{i}^{\left(n^{\prime}\right)}-\binom{m^{\prime}+n^{\prime}}{m^{\prime}} X_{i}^{\left(m^{\prime}+n^{\prime}\right)}=0
\end{aligned}
$$

The proof for the $Y_{i}^{(m)}$'s is analogous.
Notice that $\pi_{k}\left(X_{i}^{(m)} Y_{j}^{(n)}-Y_{j}^{(n)} X_{i}^{(m)}\right)=0$ if $i \neq j$. For (13), it is enough to verify that (14) is annihilated since $X_{i}^{(M)}, Y_{i}^{(N)}$ can be written as products of $X_{i}^{\left(p^{m}\right)}, Y_{j}^{\left(p^{n}\right)}$. If either $m<k$ or $n<k$, then π_{k} annihilates both sides of the equality. Let $m=n=k$. Then

$$
\begin{aligned}
& \pi_{k}\left(\left[X_{i}^{\left(p^{k}\right)}, Y_{i}^{\left(p^{k}\right)}\right]-\sum_{\ell=1}^{p^{k}} Y_{i}^{\left(p^{k}-\ell\right)}\left(\sum_{t=0}^{\ell}\binom{\ell+t}{\ell-t} H_{i}^{(t)}\right) X_{i}^{\left(p^{k}-\ell\right)}\right) \\
& \quad=\left[X_{i}, Y_{i}\right]-H_{i}=0
\end{aligned}
$$

Now π_{k} annihilates both equations of (15) by direct computation.

For (9), π_{k} annihilates the left-hand side if p^{k} does not divide either m or n. If $m=p^{k} m^{\prime}, n=p^{k} n^{\prime}$ with $n>-m a_{i j}$, then $n^{\prime}>-m^{\prime} a_{i j}$ and

$$
\pi_{k}\left(\operatorname{ad}\left(X_{i}^{(n)}\right)\left(X_{j}^{(m)}\right)\right)=\operatorname{ad}\left(X_{i}^{\left(n^{\prime}\right)}\right)\left(X_{j}^{\left(m^{\prime}\right)}\right)=0
$$

Finally (10) follows analogously. Hence π_{k} is an algebra map.
To see that π_{k} is a Hopf algebra map, it remains to prove that π_{k} is a coalgebra map. But it follows since the elements $X_{i}^{\left(p^{j}\right)}, Y_{i}^{\left(p^{j}\right)}, H_{i}^{\left(p^{j}\right)}, 0 \leq j \leq k$, which are primitive elements and generate $\mathcal{D}_{k+1} G$ as an algebra, are applied to primitive elements of $\mathcal{D}_{1} G$.

The map π_{k} fits in an exact sequence of Hopf algebras.
Proposition 2.6. The sequence of Hopf algebras

$$
\begin{equation*}
\mathbb{k} \longrightarrow \mathcal{D}_{k} G \longrightarrow \mathcal{D}_{k+1} G \xrightarrow{\pi_{k}} \mathcal{D}_{1} G \longrightarrow \mathbb{k} \tag{17}
\end{equation*}
$$

is exact.
Proof. By Lemmas 2.3 and 2.5, it remains to prove that

- $\operatorname{ker} \pi_{k}=\mathcal{D}_{k+1} G\left(\mathcal{D}_{k} G\right)^{+}$, and
- $\mathcal{D}_{k} G=\mathcal{D}_{k+1} G^{\text {co } \pi_{k}}=\left\{x \in \mathcal{D}_{k+1} G:\left(\operatorname{id} \otimes \pi_{k}\right) \Delta(x)=x \otimes 1\right\}$.

Note that $\mathcal{D}_{k+1} G\left(\mathcal{D}_{k} G\right)^{+} \subseteq \operatorname{ker} \pi_{k}$ since $\left(\mathcal{D}_{k} G\right)^{+}$is spanned by $X_{i}^{(k)}, Y_{i}^{(k)}, H_{i}^{(k)}$, $1 \leq k \leq p^{n-1}$; the equality follows because both subspaces have the same dimension, $\operatorname{dim} \mathcal{D}_{k+1} G-\operatorname{dim} \mathcal{D}_{k} G$. Now $\mathcal{D}_{k+1} G^{\mathrm{co} \pi_{k}} \supseteq \mathcal{D}_{k} G$, and the equality follows by [T2, Thm. 3.4].

§2.3. Steinberg decomposition for simple modules

The purpose of this section is to introduce Steinberg's tensor product theorem. We will prove an analogous result for our quantum version of an algebra of distributions of $S L_{2}$. In order to state this result, we fix some notation [J].

Let $T \leq G$ be a maximal split torus and $X=X(T)$ be the group of characters of T. Then R is the associated root system, S is a fixed basis of R and R^{+}is the set of positive roots corresponding to S. For each $\alpha \in R$, let α^{\vee} be the associated coroot, and let $\left\langle\beta, \alpha^{\vee}\right\rangle$ denote the natural pairing, with the normalization $\left\langle\alpha, \alpha^{\vee}\right\rangle=$ 2 for all $\alpha \in S$.

We consider the following subsets of X :
$X_{+}=\left\{\lambda \in X \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0\right.$ for all $\left.\alpha \in R^{+}\right\}$, the set of dominant weights;
$X_{r}=\left\{\lambda \in X_{+} \mid\left\langle\lambda, \alpha^{\vee}\right\rangle<p^{r}\right.$ for all $\left.\alpha \in S\right\}$, the set of r-restricted weights, $r \geq 1$.

Recall that the assignment $\lambda \mapsto L(\lambda)$ establishes a bijection between X^{+}and the simple G-modules up to isomorphism.

Let $B \leq G$ be the Borel subgroup containing T corresponding to $R^{-}=-R^{+}$. Given $\lambda \in X_{+}$and M a (rational) G-module, we set

- $M_{\lambda}=\{m \in M \mid t . m=\lambda(t) m$ for all $t \in T\}$, the λ-weight space;
- $\nabla(\lambda)=\operatorname{ind}_{B}^{G}(\lambda)$, the costandard module of highest weight λ;
- $L(\lambda)=\operatorname{soc}_{G} \nabla(\lambda)$, the simple module with highest weight λ.

Let $\mathcal{F}: G \rightarrow G$ be the Frobenius morphism: it arises from the map $\mathbb{k} \rightarrow \mathbb{k}, x \mapsto x^{p}$. Then $M^{[r]}$ is the G-module over the underlying additive group M with G-action obtained up to composing the original G-action with \mathcal{F}^{r}.

Theorem 2.7 ([J, Prop. II.3.16]). Let $r \in \mathbb{N}, \lambda \in X_{r}, \mu \in X_{+}$. Then

$$
L\left(\lambda+p^{r} \mu\right) \simeq L(\lambda) \otimes L(\mu)^{[r]}
$$

§3. Some cleft extensions of $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$

We introduce the algebras $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right), N \in \mathbb{N}_{0}$, and prove some properties about their algebra structure that mimic Section 2.

§3.1. q-numbers

We use the following q-numbers as in [L3]:

$$
\begin{gather*}
{[m]_{\lambda}:=\frac{\lambda^{m}-\lambda^{-m}}{\lambda-\lambda^{-1}}, \quad[m]_{\lambda}^{!}=(m)_{\lambda}(m-1)_{\lambda} \cdots(1)_{\lambda}} \tag{18}\\
{\left[\begin{array}{c}
m \\
n
\end{array}\right]_{\lambda}:=\prod_{j=1}^{n} \frac{\lambda^{m-j+1}-\lambda^{-m+j-1}}{\lambda^{j}-\lambda^{-j}}, \quad 0 \leq n<\ell} \tag{19}
\end{gather*}
$$

Let λ be a primitive root of unity of order ℓ; we assume that $\ell>1$ is odd.
Now we need q-binomial numbers associated to the ℓ-expansion. Set

$$
\left\{\begin{array}{c}
m \tag{20}\\
n
\end{array}\right\}_{\lambda}:=\prod_{i \geq 0}\left[\begin{array}{c}
m_{i} \\
n_{i}
\end{array}\right]_{\lambda}, \quad m=\sum_{i \geq 0} m_{i} \ell^{i}, \quad n=\sum_{i \geq 0} n_{i} \ell^{i}, \quad 0 \leq m_{i}, n_{i}<\ell .
$$

Lemma 3.1. Let $m, n, p \geq 0$. Then

$$
\begin{gather*}
\left\{\begin{array}{c}
m+n \\
m
\end{array}\right\}_{\lambda}=\left\{\begin{array}{c}
m+n \\
n
\end{array}\right\}_{\lambda} \tag{21}\\
\left\{\begin{array}{c}
m+n \\
n
\end{array}\right\}_{\lambda}\left\{\begin{array}{c}
m+n+p \\
p
\end{array}\right\}_{\lambda}=\left\{\begin{array}{c}
n+p \\
n
\end{array}\right\}_{\lambda}\left\{\begin{array}{c}
m+n+p \\
m
\end{array}\right\}_{\lambda} \tag{22}
\end{gather*}
$$

Proof. For (21), if $m_{i}+n_{i}<\ell$ for all i, then $(m+n)_{i}=m_{i}+n_{i}$ and

$$
\left\{\begin{array}{c}
m+n \\
m
\end{array}\right\}_{\lambda}=\prod_{i \geq 0}\left[\begin{array}{c}
m_{i}+n_{i} \\
n_{i}
\end{array}\right]_{\lambda}=\left\{\begin{array}{c}
m+n \\
n
\end{array}\right\}_{\lambda}
$$

Otherwise there exists $i \geq 0$ such that $m_{i}+n_{i} \geq \ell$, and we assume i is minimal with this property. Thus $(m+n)_{i}=m_{i}+n_{i}-\ell<m_{i}, n_{i}$, and both sides are 0 .

For (22), if $m_{i}+n_{i}+p_{i}<\ell$ for all i, then $(m+n+p)_{i}=m_{i}+n_{i}+p_{i}$ and

$$
\left\{\begin{array}{c}
m+n \\
n
\end{array}\right\}_{\lambda}\left\{\begin{array}{c}
m+n+p \\
p
\end{array}\right\}_{\lambda}=\prod_{i \geq 0} \frac{\left[m_{i}+n_{i}+p_{i}\right]_{\lambda}^{!}}{\left[m_{i}\right]_{\lambda}^{!}\left[n_{i}\right]_{\lambda}^{!}\left[p_{i}\right]_{\lambda}^{!}}=\left\{\begin{array}{c}
n+p \\
n
\end{array}\right\}_{\lambda}\left\{\begin{array}{c}
m+n+p \\
m
\end{array}\right\}_{\lambda}
$$

Otherwise there exists $i \geq 0$ such that $m_{i}+n_{i}+p_{i} \geq \ell$, and we assume i is minimal with this property.

- If $m_{i}+n_{i}, n_{i}+p_{i} \geq \ell$, then $\left\{\begin{array}{c}m+n \\ n\end{array}\right\}_{\lambda}=\left\{\begin{array}{c}n+p \\ n\end{array}\right\}_{\lambda}=0$ since $(m+n)_{i}=$ $m_{i}+n_{i}-\ell<n_{i},(n+p)_{i}=n_{i}+p_{i}-\ell<n_{i}$.
- If $m_{i}+n_{i} \geq \ell>n_{i}+p_{i}$, then $\{\underset{n}{m+n}\}_{\lambda}=\{\underset{m}{m+n+p}\}_{\lambda}=0$ since $(m+n)_{i}=$ $m_{i}+n_{i}-\ell<n_{i},(n+p)_{i}=n_{i}+p_{i},(m+n+p)_{i}=m_{i}+n_{i}+p_{i}-\ell<m_{i}$.
- Finally, if $m_{i}+n_{i}, n_{i}+p_{i}<\ell$, then $\left\{\begin{array}{c}m+n+p \\ p\end{array}\right\}_{\lambda}=\{\underset{m}{m+n+p}\}_{\lambda}=0$.

In all the cases, both sides of (22) are 0 .

§3.2. The Hopf algebra $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$

Throughout this work $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$ denotes the algebra presented by generators E, K, F, and relations

$$
\begin{equation*}
K^{\ell}=1, \quad K F=\lambda^{-2} F K \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
E^{\ell}=F^{\ell}=0, \quad K E=\lambda^{2} E K, \quad E F-F E=\frac{K-K^{-1}}{\lambda-\lambda^{-1}} \tag{24}
\end{equation*}
$$

It is slightly different from the small quantum group appearing in [L2]. Then $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$ is a Hopf algebra with coproduct:

$$
\Delta(K)=K \otimes K, \quad \Delta(E)=E \otimes 1+K \otimes E, \quad \Delta(F)=F \otimes K^{-1}+1 \otimes F
$$

Let $\mathfrak{u}_{\lambda}^{+}\left(\mathfrak{s l}_{2}\right)$, respectively $\mathfrak{u}_{\lambda}^{0}\left(\mathfrak{s l}_{2}\right), \mathfrak{u}_{\lambda}^{-}\left(\mathfrak{s l}_{2}\right)$, be the subalgebra spanned by E, respectively K, F. Then $\mathfrak{u}_{\lambda}^{0}\left(\mathfrak{s l}_{2}\right) \simeq \mathbb{k} \mathbb{Z} / \ell \mathbb{Z}$ while $\mathfrak{u}_{\lambda}^{ \pm}\left(\mathfrak{s l}_{2}\right)$ are isomorphic to $\mathbb{k}[x] /\left\langle x^{\ell}\right\rangle$. The multiplication induces a linear isomorphism

$$
\mathfrak{u}_{\lambda}^{-}\left(\mathfrak{s l}_{2}\right) \otimes \mathfrak{u}_{\lambda}^{0}\left(\mathfrak{s l}_{2}\right) \otimes \mathfrak{u}_{\lambda}^{+}\left(\mathfrak{s l}_{2}\right) \simeq \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right) .
$$

Thus $\left\{F^{a} K^{b} E^{c} \mid 0 \leq a, b, c<\ell\right\}$ is a basis of $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$ and $\operatorname{dim} \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)=\ell^{3}$. To simplify the notation in forthcoming computations, let

$$
E^{(a)}=\frac{E^{a}}{[a]_{\lambda}^{!}}, \quad F^{(a)}=\frac{F^{a}}{[a]_{\lambda}^{!}}, \quad\left[\begin{array}{c}
K ; s]_{\lambda} \\
a
\end{array} \prod_{\lambda}^{a} \frac{\lambda^{s-j+1} K-\lambda^{-s+j-1} K^{-1}}{\lambda^{j}-\lambda^{-j}} .\right.
$$

By direct computation,

$$
E^{(m)} F^{(n)}=\sum_{i=0}^{\min \{m, n\}} F^{(n-i)}\left[\begin{array}{c}
K ; 2 i-m-n \tag{25}\\
i
\end{array}\right]_{\lambda} E^{(m-i)}, \quad 0 \leq m, n<\ell .
$$

Let $\mathfrak{u}_{\lambda}^{\geq 0}\left(\mathfrak{s l}_{2}\right)$ be the subalgebra spanned by E and K. For each $0 \leq z<\ell$ the 1-dimensional representation \mathbb{k}_{z} of $\mathfrak{u}_{\lambda}^{0}\left(\mathfrak{s l}_{2}\right) \simeq \mathbb{k} \mathbb{Z} / \ell \mathbb{Z}$ given by $K \mapsto \lambda^{z}$ can be extended to $\mathfrak{u}_{\lambda}^{\geq 0}\left(\mathfrak{s l}_{2}\right)$ by $E \mapsto 0$. Let $\mathcal{M}(z)=\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right) \otimes_{\mathfrak{u}_{\lambda}^{\geq 0}\left(\mathfrak{s l}_{2}\right)} \mathbb{k}_{z}$: it is a $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$ module with basis $v_{j}:=F^{(j)} \otimes 1,0 \leq j<\ell$, such that for all $0 \leq m, n<\ell$,

$$
\begin{gather*}
F^{(m)} \cdot v_{n}=\left[\begin{array}{c}
m+n \\
m
\end{array}\right]_{\lambda} v_{m+n}, \quad K \cdot v_{n}=\lambda^{z-2 n} v_{n}, \tag{26}\\
E^{(m)} \cdot v_{n}=\left[\begin{array}{c}
z+m-n \\
m
\end{array}\right]_{\lambda} v_{n-m} . \tag{27}
\end{gather*}
$$

Here $v_{n}=0$ if either $n<0$ or $n \geq \ell$. Each module $\mathcal{M}(z)$ has a maximal proper submodule $\mathcal{N}(z)$. The quotient $\mathcal{L}(z)=\mathcal{M}(z) / \mathcal{N}(z)$ is simple, and has dimension $z+1$: indeed $\left(v_{i}\right)_{0 \leq i \leq z}$ is a basis of $\mathcal{L}(z)$. Moreover, the family $\{\mathcal{L}(z)\}_{0 \leq z<\ell}$ is a set of representatives of the classes of simple modules up to isomorphism.

§3.3. The cleft extensions $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$

We mimic the definition by generators and relations of the algebra of distributions, but in a quantized context.

Definition 3.2. Let $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ be the algebra defined by generators $E^{[i]}, F^{[i]}$, $K^{[i]}, 0 \leq i \leq N$ and relations

$$
\begin{align*}
& K^{[i]} K^{[j]}=K^{[j]} K^{[i]}, \quad\left(K^{[i]}\right)^{\ell}=1 ; \tag{28}\\
& K^{[i]} E^{[j]}=\lambda^{2 \delta_{i j}} E^{[j]} K^{[i]}, \quad K^{[i]} F^{[j]}=\lambda^{-2 \delta_{i j}} F^{[j]} K^{[i]} ; \tag{29}\\
& E^{[i]} E^{[j]}=E^{[j]} E^{[i]}, \quad F^{[i]} F^{[j]}=F^{[j]} F^{[i]} ; \tag{30}\\
& \left(E^{[i]}\right)^{\ell}=\left(F^{[i]}\right)^{\ell}=0 ; \quad E^{[i]} F^{[j]}=F^{[j]} E^{[i]}, \quad j \neq i ; \tag{31}\\
& E^{[j]} F^{[j]}=\sum_{t=0}^{\ell^{j}} F^{\left(\ell^{j}-t\right)}\left\{\begin{array}{c}
K ; 2 t-2 \ell^{j} \\
t
\end{array}\right\} E^{\left(\ell^{j}-t\right)} . \tag{32}
\end{align*}
$$

Here, $K^{[-i]}:=\left(K^{[i]}\right)^{-1}$; for $m=\sum_{i=0}^{N} m_{i} \ell^{i}, s=\sum_{i=0}^{N} s_{i} \ell^{i}, t=\sum_{i=0}^{N} t_{i} \ell^{i}$, $0 \leq m_{i}, s_{i}, t_{i}<\ell$,

$$
E^{(m)}:=\prod_{i=0}^{N} \frac{\left(E^{[i]}\right)^{m_{i}}}{\left[m_{i}\right]_{\lambda}^{!}}, \quad\left\{\begin{array}{c}
K ; s \\
t
\end{array}\right\}=\prod_{i=0}^{N}\left[\begin{array}{c}
K^{[i]} ; s_{i} \\
t_{i}
\end{array}\right]_{\lambda}, \quad F^{(m)}:=\prod_{i=0}^{N} \frac{\left(F^{[i]}\right)^{m_{i}}}{\left[m_{i}\right]_{\lambda}^{!}} .
$$

Remark 3.3. The algebra $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is \mathbb{Z}-graded, with

$$
\operatorname{deg} E^{[i]}=-\operatorname{deg} F^{[i]}=\ell^{i}, \quad \operatorname{deg} K^{[i]}=0, \quad 0 \leq i \leq N .
$$

Lemma 3.4. For each pair $M<N$, there exists a surjective algebra map $\pi_{M, N}$: $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{D}_{\lambda, M}\left(\mathfrak{s l}_{2}\right)$ such that

$$
\pi_{N}\left(X^{[i]}\right)=\left\{\begin{array}{ll}
X^{[i-N+M]}, & i \geq N-M, \\
0, & i<N-M,
\end{array} \quad X \in\{E, F, K\}\right.
$$

In particular, there exists a surjective algebra map $\pi_{N}: \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$,

$$
\pi_{N}\left(E^{[i]}\right)=\delta_{i N} E, \quad \pi_{N}\left(F^{[i]}\right)=\delta_{i N} F, \quad \pi_{N}\left(K^{[i]}\right)=K^{\delta_{i N}}, \quad 0 \leq i \leq N
$$

Proof. Straightforward.
Let $\mathcal{D}_{\lambda, N}^{+}\left(\mathfrak{s l}_{2}\right)$, respectively $\mathcal{D}_{\lambda, N}^{-}\left(\mathfrak{s l}_{2}\right), \mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right)$, be the subalgebras generated by $E^{[i]}$, respectively $F^{[i]}, K^{[i]}, 0 \leq i \leq N$. Let $\mathcal{D}_{\lambda, N}^{\geq 0}\left(\mathfrak{s l}_{2}\right)$, respectively $\mathcal{D}_{\lambda, N}^{\leq 0}\left(\mathfrak{s l}_{2}\right)$, be the subalgebras generated by $E^{[i]}$ and $K^{[i]}$, respectively $F^{[i]}$ and $K^{[i]}$.

Remark 3.5. (a) There exists an algebra antiautomorphism ϕ_{N} of $\mathcal{D}_{\lambda, N}^{+}\left(\mathfrak{s l}_{2}\right)$ such that $\phi_{N}\left(E^{[i]}\right)=F^{[i]}, \phi_{N}\left(F^{[i]}\right)=E^{[i]}, \phi_{N}\left(K^{[i]}\right)=K^{[i]}, 0 \leq i \leq N$.
(b) There exists an algebra map $\iota_{N}: \mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ that identifies the corresponding generators. Clearly, $\phi_{N} \circ \iota_{N}=\iota_{N} \circ \phi_{N-1}$.

Lemma 3.6. Let $z=\sum_{i=0}^{N} z_{i} \ell^{i}, 0 \leq z_{i}<\ell$. There exists a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module $M(z)$ with basis $\left(v_{t}\right)_{0 \leq t \leq \ell^{N+1}-1}$ such that

$$
\begin{align*}
& E^{[i]} \cdot v_{t}=\left\{\begin{array}{ll}
{\left[z_{i}+1-t_{i}\right]_{\lambda} v_{t-\ell^{i}},} & t_{i}>0, \\
0, & t_{i}=0,
\end{array} \quad K^{[i]} \cdot v_{t}=\lambda^{z_{i}-2 t_{i}} v_{t},\right. \tag{33}\\
& F^{[i]} \cdot v_{t}=\left[t_{i}+1\right]_{\lambda} v_{t+\ell^{i}}, \quad 0 \leq i \leq N . \tag{34}
\end{align*}
$$

Proof. We simply check that $E^{[i]}, F^{[i]}, K^{[i]} \in \operatorname{End} M(z), 0 \leq i \leq N$, satisfy relations (28)-(32). The first equation of (28) holds since $K^{[i]} K^{[j]} \cdot v_{t}=\lambda^{z_{i}+z_{j}-2 t_{i}-2 t_{j}} v_{t}$,
while the second follows since $\lambda^{\ell}=1$. For the first relation in (29), both sides annihilate v_{t} if $t_{j}=0$; for $t_{j} \neq 0,\left(t-\ell^{j}\right)_{i}=t_{i}-\delta_{i j}$, so

$$
K^{[i]} E^{[j]} \cdot v_{t}=\left[z_{j}+1-t_{j}\right]_{\lambda} \lambda^{z_{i}-2\left(t-\ell^{j}\right)_{i}} v_{t-\ell^{j}}=\lambda^{2 \delta_{i j}} E^{[j]} K^{[i]} \cdot v_{t}
$$

For the second relation, both sides annihilate v_{t} if $t_{j}=\ell-1$; for $t_{j}<\ell-1$,

$$
K^{[i]} F^{[j]} \cdot v_{t}=\left[t_{j}+1\right]_{\lambda} \lambda^{z_{i}-2\left(t+\ell^{j}\right)_{i}} v_{t+\ell^{j}}=\lambda^{-2 \delta_{i j}} F^{[j]} K^{[i]} \cdot v_{t},
$$

since $\left(t+\ell^{j}\right)_{i}=t_{i}+\delta_{i j}$. For the first equation in (30), if $t_{i} t_{j} \neq 0, i \neq j$, then

$$
\begin{aligned}
E^{[i]} E^{[j]} \cdot v_{t} & =\left[z_{j}-t_{j}+1\right]_{\lambda}\left[z_{i}-\left(t-\ell^{j}\right)_{i}+1\right]_{\lambda} v_{t-\ell^{i}-\ell^{j}} \\
& =\left[z_{j}-t_{j}+1\right]_{\lambda}\left[z_{i}-t_{i}+1\right]_{\lambda} v_{t-\ell^{i}-\ell^{j}}=E^{[j]} E^{[i]} \cdot v_{t}
\end{aligned}
$$

while for $t_{i} t_{j}=0$, both sides are 0 . The second equation follows similarly.
For the first part of $(31),\left(E^{[i]}\right)^{t_{i}+1} \cdot v_{t}=\left(F^{[i]}\right)^{\ell-t_{i}} \cdot v_{t}=0$, so $\left(E^{[i]}\right)^{\ell},\left(F^{[i]}\right)^{\ell}$ are 0 as operators on $M(z)$. For the second equality, fix $i \neq j$. If $t_{i}=0$, then either $\left(t+\ell^{j}\right)_{i}=t_{i}$ or $t_{j}=\ell-1$; in any case, $E^{[i]} F^{[j]} \cdot v_{t}=0=F^{[j]} E^{[i]} \cdot v_{t}$. If $t_{j}=\ell-1$, then again both sides are 0 . Finally, set $t_{i} \neq 0, t_{j} \neq \ell-1$. Hence,

$$
\begin{aligned}
E^{[i]} F^{[j]} \cdot v_{t} & =\left[t_{j}+1\right]_{\lambda}\left[z_{i}-\left(t+\ell^{j}\right)_{i}+1\right]_{\lambda} v_{t-\ell^{i}+\ell^{j}} \\
& =\left[\left(t-\ell^{i}\right)_{j}+1\right]_{\lambda}\left[z_{i}-t_{i}+1\right]_{\lambda} v_{t-\ell^{i}+\ell^{j}}=F^{[j]} E^{[i]} \cdot v_{t} .
\end{aligned}
$$

It remains to consider (32), which can be written as

$$
E^{[j]} F^{[j]}-F^{[j]} E^{[j]}-\frac{K^{[j]}-K^{[-j]}}{\lambda-\lambda^{-1}}=\sum_{s=1}^{\ell^{j}-1} F^{\left(\ell^{j}-s\right)}\left\{\begin{array}{c}
K ; 2 s \tag{35}\\
s
\end{array}\right\} E^{\left(\ell^{j}-s\right)} .
$$

If $1 \leq s \leq \ell^{j}-1$, then there exists $i<j$ such that $s_{i} \neq 0$. If $t_{i} \geq \ell-s_{i}$, then

$$
\left[\begin{array}{c}
K^{[i]} ; 2 s_{i} \\
s_{i}
\end{array}\right]_{\lambda}\left(E^{[i]}\right)^{\ell-s_{i}} \cdot v_{t}=\prod_{k=1}^{\ell-s_{i}}\left[z_{i}-t_{i}+k\right]_{\lambda} \prod_{k=1}^{s_{i}}\left[z_{i}-t_{i}+k\right]_{\lambda} v_{t-\left(\ell-s_{i}\right) \ell^{i}}=0 .
$$

If $t_{i}<\ell-s_{i}$, then $\left(E^{[i]}\right)^{\ell-s_{i}} \cdot v_{t}=0$. In any case, $\left\{\begin{array}{c}K ; 2 s \\ s\end{array}\right\} E^{\left(\ell^{j}-s\right)} \cdot v_{t}=0$, so the right-hand side of (35) acts by 0 on each v_{t}. For the left-hand side,

$$
\begin{aligned}
& \left(E^{[j]} F^{[j]}-F^{[j]} E^{[j]}-\frac{K^{[j]}-K^{[-j]}}{\lambda-\lambda^{-1}}\right) \cdot v_{t} \\
& \quad=\left(\left[t_{j}+1\right]_{\lambda}\left[z_{j}-t_{j}\right]_{\lambda}-\left[z_{j}-t_{j}+1\right]_{\lambda}\left[t_{j}\right]_{\lambda}-\left[z_{j}-2 t_{j}\right]_{\lambda}\right) v_{t}=0
\end{aligned}
$$

when $t_{j} \neq 0, \ell-1$. If $t_{j}=0$, then

$$
\left(E^{[j]} F^{[j]}-F^{[j]} E^{[j]}-\frac{K^{[j]}-K^{[-j]}}{\lambda-\lambda^{-1}}\right) \cdot v_{t}=E^{[j]} \cdot v_{t+\ell^{j}}-0-\left[z_{j}\right]_{\lambda} v_{t}=0
$$

and finally if $t_{j}=\ell-1$, then

$$
\left(E^{[j]} F^{[j]}-F^{[j]} E^{[j]}-\frac{K^{[j]}-K^{[-j]}}{\lambda-\lambda^{-1}}\right) \cdot v_{t}=-\left[z_{j}+2\right]_{\lambda}\left(F^{[j]} \cdot v_{t-\ell^{j}}+v_{t}\right)=0
$$

In any case, the left-hand side of (35) also acts by 0 on each v_{t}.
Lemma 3.7. There exists an algebra map $\rho_{N}: \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right) \otimes \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$,

$$
\begin{array}{lll}
\rho_{N}\left(E^{[i]}\right)=1 \otimes E^{[i]}, & i<N, & \\
\rho_{N}\left(F^{[i]}\right)=1 \otimes F^{[i]}, & i<N, & \\
\rho_{N}\left(F^{[N]}\right)=F \otimes 1+K \otimes E^{[N]}, \\
\rho_{N}\left(K^{[i]}\right)=1 \otimes K^{[i]}, & i<N, & \\
\rho_{N}\left(K^{[N]}\right)=K \otimes F^{[N]},
\end{array}
$$

Moreover, $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is a left $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-comodule algebra with this map.
Proof. Let \mathfrak{F} be the free algebra generated by $E^{[i]}, F^{[i]}, K^{[i]}$, and $\widetilde{\rho}_{N}: \mathfrak{F} \rightarrow$ $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right) \otimes \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ the map defined on the generators as ρ_{N}. We check that $\widetilde{\rho}_{N}$ annihilates each defining relation of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ so it induces the algebra map ρ_{N}. For each relation r involving only generators $E^{[i]}, F^{[i]}, K^{[i]}, 0 \leq i<N$ we have that $\widetilde{\rho}_{N}(\mathrm{r})=1 \otimes \mathrm{r}=0$, so we consider those relations involving at least one of the generators $E^{[N]}, F^{[N]}, K^{[N]}$.

For (28), $\widetilde{\rho}_{N}\left(\left(K^{[N]}\right)^{\ell}\right)=K^{\ell} \otimes\left(K^{[N]}\right)^{\ell}=1 \otimes 1$ and for $i<N$,

$$
\widetilde{\rho}_{N}\left(K^{[i]} K^{[N]}-K^{[N]} K^{[i]}\right)=K \otimes\left(K^{[i]} K^{[N]}-K^{[N]} K^{[i]}\right)=0
$$

For (29) and (30), if $i<N$, then

$$
\begin{aligned}
\widetilde{\rho}_{N}\left(K^{[i]} E^{[N]}-E^{[N]} K^{[i]}\right)= & K \otimes\left(K^{[i]} E^{[N]}-E^{[N]} K^{[i]}\right)=0, \\
\widetilde{\rho}_{N}\left(K^{[N]} E^{[i]}-E^{[i]} K^{[N]}\right)= & K \otimes\left(K^{[N]} E^{[i]}-E^{[i]} K^{[N]}\right)=0, \\
\widetilde{\rho}_{N}\left(K^{[N]} E^{[N]}-\lambda^{2} E^{[N]} K^{[N]}\right)= & \left(K E-\lambda^{2} E K\right) \otimes K^{[N]} \\
& +K^{2} \otimes\left(K^{[N]} E^{[N]}-\lambda^{2} E^{[N]} K^{[N]}\right)=0, \\
\widetilde{\rho}_{N}\left(E^{[i]} E^{[N]}-E^{[N]} E^{[i]}\right)= & K \otimes\left(E^{[i]} E^{[N]}-E^{[N]} E^{[i]}\right)=0 .
\end{aligned}
$$

The formulas with F in place of E follow analogously. For (31),

$$
\tilde{\rho}_{N}\left(\left(E^{[N]}\right)^{\ell}\right)=\sum_{j=0}^{\ell}\left\{\begin{array}{l}
\ell \\
j
\end{array}\right\}_{\lambda} E^{\ell-j} K^{j} \otimes\left(E^{[N]}\right)^{j}=0
$$

and analogously $\widetilde{\rho}_{N}\left(\left(F^{[N]}\right)^{\ell}\right)=0$. Finally, for (32) set \mathbf{r}_{N} as the difference between the two sides of this equation; see also (35). By direct computation,

$$
\widetilde{\rho}_{N}\left(\mathrm{r}_{N}\right)=K \otimes \mathrm{r}_{N}+\left(E F-F E-\frac{K-K^{-1}}{\lambda-\lambda^{-1}}\right) \otimes K^{[-N]}=0
$$

Then ρ_{N} is a well-defined algebra map, and gives a left $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-coaction.
Proposition 3.8. Let ρ_{N} be as above. Then $\iota_{N}\left(\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)\right)={ }^{\operatorname{co} \rho_{N}} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$, and $\iota_{N}\left(\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)\right) \subset \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is a $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-cleft extension.

Proof. Let $\gamma: \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ be the linear map such that

$$
\begin{equation*}
\gamma\left(F^{(a)} K^{b} E^{(c)}\right)=\frac{\left(F^{[N]}\right)^{a}}{[a]_{\lambda}^{!}}\left(K^{[N]}\right)^{b} \frac{\left(E^{[N]}\right)^{c}}{[c]_{\lambda}^{!}}, \quad 0 \leq a, b, c<\ell \tag{36}
\end{equation*}
$$

By direct computation,

$$
\begin{aligned}
(\operatorname{id} \otimes \gamma) \circ \Delta\left(F^{(a)} K^{b} E^{(c)}\right) & =\sum_{i, j} F^{(a-i)} K^{b+i+j} E^{(c-j)} \otimes \frac{\left(F^{[N]}\right)^{i}}{[i]_{\lambda}^{!}}\left(K^{[N]}\right)^{b} \frac{\left(E^{[N]}\right)^{j}}{[j]_{\lambda}^{!}} \\
& =\rho \circ \gamma\left(F^{a} K^{b} E^{c}\right),
\end{aligned}
$$

so γ is a map of $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-comodules. We claim that γ is convolution invertible. By [Mo, Lem. 5.2.10], it is enough to restrict γ to the coradical of $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$, that is, to $\mathfrak{u}_{\lambda}^{0}\left(\mathfrak{s l}_{2}\right)$. Now $\kappa: \mathfrak{u}_{\lambda}^{0}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right), \kappa\left(K^{b}\right)=\left(K^{[N]}\right)^{-b}, 0 \leq b<\ell$ is the inverse of $\gamma_{\mid \mathfrak{u}_{\lambda}^{0}\left(\mathfrak{s l}_{2}\right)}$ and the claim follows.

Let $B_{N}:=\left\{F^{(m)} K^{(n)} E^{(p)} \mid 0 \leq m, n, p<\ell^{N+1}\right\}$. We claim that $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is spanned by $B_{N} .{ }^{1}$ Let I be the subspace spanned by B_{N}. Note that I is a left ideal, since it is stable by left multiplication by $F^{[n]}, K^{[n]}$ and $E^{[n]}$ by (28)-(32). Thus $I=\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ since $1 \in I$, so $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is spanned by B_{N}. As

$$
F^{(m)} K^{(n)} E^{(p)}=F^{\left(m^{\prime}\right)} K^{\left(n^{\prime}\right)} E^{\left(p^{\prime}\right)} \frac{\left(F^{[N]}\right)^{m_{N}}}{\left[m_{N}\right]_{\lambda}^{!}}\left(K^{[N]}\right)^{n_{N}} \frac{\left(E^{\left[p_{N}\right]}\right)^{c}}{\left[p_{N}\right]_{\lambda}^{!}}
$$

where $0 \leq m^{\prime}=m-m_{N} \ell^{N}, n^{\prime}=n-n_{N} \ell^{N}, p^{\prime}=p-p_{N} \ell^{N}<\ell^{N}$, and $F^{\left(m^{\prime}\right)} K^{\left(n^{\prime}\right)} E^{\left(p^{\prime}\right)} \in \iota_{N}\left(\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)\right)$, we have

$$
\operatorname{dim} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \leq \operatorname{dim} \iota_{N}\left(\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)\right) \ell^{3}
$$

As we have a cleft extension, $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \simeq \operatorname{co} \rho_{N} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \otimes \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right) ;$ using this fact and that $\iota_{N}\left(\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)\right) \subset^{\operatorname{co} \rho_{N}} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ since ι_{N} sends each generator of

[^0]$\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$ to a coinvariant element, we have
$$
\operatorname{dim} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)=\operatorname{dim}^{\operatorname{co} \rho_{N}} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \ell^{3} \geq \operatorname{dim} \iota_{N}\left(\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)\right) \ell^{3}
$$

Hence $\operatorname{dim}^{\operatorname{co} \rho_{N}} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)=\operatorname{dim} \iota_{N}\left(\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)\right)$, which means that these two subalgebras of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ coincide.

Proposition 3.9. (a) There exist algebra isomorphisms

$$
\begin{array}{ll}
\mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right) \simeq \mathbb{k}\left(\mathbb{Z}_{\ell}\right)^{N+1}, & \mathcal{D}_{\lambda, N}^{\geq 0}\left(\mathfrak{s l}_{2}\right) \simeq\left(\mathfrak{u}_{\lambda}^{\geq 0}\left(\mathfrak{s l}_{2}\right)\right)^{N+1} \\
\mathcal{D}_{\lambda, N}^{ \pm}\left(\mathfrak{s l}_{2}\right) \simeq\left(\mathfrak{u}_{\lambda}^{ \pm}\left(\mathfrak{s l}_{2}\right)\right)^{N+1}, & \mathcal{D}_{\lambda, N}^{\leq 0}\left(\mathfrak{s l}_{2}\right) \simeq\left(\mathfrak{u}_{\lambda}^{\leq 0}\left(\mathfrak{s l}_{2}\right)\right)^{N+1}
\end{array}
$$

(b) $B_{N}:=\left\{F^{(m)} K^{(n)} E^{(p)} \mid 0 \leq m, n, p<\ell^{N+1}\right\}$ is a basis of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$.
(c) The multiplication induces a linear isomorphism

$$
\mathcal{D}_{\lambda, N}^{-}\left(\mathfrak{s l}_{2}\right) \otimes \mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right) \otimes \mathcal{D}_{\lambda, N}^{+}\left(\mathfrak{s l}_{2}\right) \simeq \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) .
$$

Proof. The algebra $\left(\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)\right)^{N+1}$ is generated by $\mathrm{E}_{i}, \mathrm{~F}_{i}, \mathrm{~K}_{i}, 0 \leq i \leq N$, where each 3-tuple $\mathrm{E}_{i}, \mathrm{~F}_{i}, \mathrm{~K}_{i}$ satisfies (23), (24), and generators with different subindex commute. There are algebra maps $\Phi^{\ddagger}:\left(\mathfrak{u}_{\lambda}^{\ddagger}\left(\mathfrak{s l}_{2}\right)\right)^{N+1} \rightarrow \mathcal{D}_{\lambda, N}^{\ddagger}\left(\mathfrak{s l}_{2}\right), \ddagger \in\{ \pm, 0, \geq$ $0, \leq 0\}$, where $\mathrm{E}_{i} \mapsto E^{[i]}, \mathrm{F}_{i} \mapsto F^{[i]}, \mathrm{K}_{i} \mapsto K^{[i]}$, depending on each case.

For $0 \leq z<\ell^{N+1}$, let $\Psi_{z}: \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow$ End $M(z)$ be the algebra map of Lemma 3.6. Notice that $\Psi_{z} \Phi^{-}$is injective, and then Φ^{-}is also; thus $\mathcal{D}_{\lambda, N}^{-}\left(\mathfrak{s l}_{2}\right) \simeq$ $\left(\mathfrak{u}_{\lambda}^{-}\left(\mathfrak{s l}_{2}\right)\right)^{N+1}$. The map $\Phi^{0}: \mathbb{k}\left(\mathbb{Z}_{\ell}\right)^{N+1} \rightarrow \mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right), \alpha_{i} \mapsto K_{i}$ is surjective. The action of $\mathbb{k}\left(\mathbb{Z}_{\ell}\right)^{N+1}$ over v_{0} is given by character $K_{i} \mapsto \lambda^{z_{i}}$. Thus $\mathbb{k}\left(\mathbb{Z}_{\ell}\right)^{N+1} \simeq$ $\mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right)$. From here we derive that $\Phi \leq 0$ is also an isomorphism. The remaining isomorphisms in (a) follow by using the antiautomorphism ϕ.

For (b), we have to prove that B_{N} is linearly independent since we have proved that $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is spanned by B_{N} in the proof of Proposition 3.8. We invoke the diamond lemma [B, Thm. 1.2]. Indeed, the lexicographical order for words written with letters $\left\{F^{[i]}, K^{[i]}, E^{[i]}\right\}_{0 \leq i \leq N}$ such that

$$
F^{[0]}<\cdots<F^{[N]}<K^{[0]}<\cdots<K^{[N]}<E^{[0]}<\cdots<E^{[N]}
$$

is compatible (in the notation of $[\mathrm{B}]$) with the reduction system. Each element of B_{N} is irreducible, so B_{N} is contained in a basis of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$. Thus B_{N} is a linearly independent set. Finally (c) follows (a) and (b).

Definition 3.10. By Proposition 3.9(b), each ι_{N} is injective. Hence we may consider $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$ as a subalgebra of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$. Moreover, we can consider the inclusions $\iota_{M, N}: \mathcal{D}_{\lambda, M}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ for $M \leq N$, where

$$
\iota_{N, N}=\operatorname{id}_{\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)}, \quad \iota_{M, N}=\iota_{M} \iota_{M+1} \ldots \iota_{N-1} \text { for } M<N .
$$

Then we define

$$
\begin{equation*}
\mathcal{D}_{\lambda}\left(\mathfrak{s l}_{2}\right):=\lim _{\rightarrow} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \tag{37}
\end{equation*}
$$

§4. Finite-dimensional irreducible $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-modules

Next we study simple modules for the algebras $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$. We prove that they are highest weight modules as we can expect, and obtain a decomposition related with the inclusion $\iota_{N-1, N}: \mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ and the Frobenius map $\pi_{N}: \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$. The tensor product decomposition can be seen as analogous to Steinberg decomposition; cf. Theorem 2.7.

§4.1. Highest weight modules

Now we mimic what is done for simple modules of quantum groups, e.g., [L2, Sects. $6 \& 7]$. For the sake of completeness we include the proofs.

Let V be a finite-dimensional $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module. As $\mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right)$ is the group algebra of $\mathbb{Z}_{\ell}^{N+1}, V$ decomposes as the direct sum of eigenspaces: each $K^{[i]}$ acts by a scalar $\lambda^{p_{i}}, 0 \leq p_{i}<\ell$. Hence we may encode the data saying that $V=$ $\oplus_{0 \leq p<\ell^{N+1}} V_{p}$, where

$$
\begin{equation*}
V_{p}:=\left\{v \in V \mid K^{[i]} \cdot v=\lambda^{p_{i}} v \text { for all } 0 \leq i \leq N\right\}, \quad p=\sum_{i=0}^{N} p_{i} \ell^{i} . \tag{38}
\end{equation*}
$$

Definition 4.1. We say that $v \in V$ is a primitive vector of weight p if $v \in V_{p}$ and $E^{[i]} \cdot v=0$ for all $0 \leq i \leq N$. Also, V is called a highest weight module if it is generated (as a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module) by a primitive vector v, which is called a highest weight vector; its weight p is called a highest weight.

Given $0 \leq p<\ell^{N+1}$, let \mathbb{k}_{p} be the 1-dimensional representation of $\mathcal{D}_{\lambda, N}^{\geq 0}\left(\mathfrak{s l}_{2}\right) \simeq$ $\left(\mathfrak{u}_{\lambda}^{\geq 0}\left(\mathfrak{s l}_{2}\right)\right)^{N+1}$ such that $K^{[i]} \cdot 1=\lambda^{p_{i}}$ and $E^{[i]} \cdot 1=0$. Let

$$
\mathcal{M}_{N}(p)=\operatorname{Ind}_{\mathcal{D}_{\lambda, N}^{D \geq 0}\left(\mathfrak{s l}_{2}\right)}^{\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)} \mathbb{k}_{p} \simeq \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \otimes_{\mathcal{D}_{\lambda, N}^{\geq 0}\left(\mathfrak{s l}_{2}\right)} \mathbb{k}_{p}
$$

Notice that $v_{0}:=1 \otimes 1 \in \mathcal{M}_{N}(p)$ is a primitive vector, and moreover, $\mathcal{M}_{N}(p)$ is a highest weight module with highest weight p.
Remark 4.2. Let $v_{t}=F^{(t)} v_{0} \in \mathcal{M}_{N}(p)$. Then $\left(v_{t}\right)_{0 \leq t<\ell^{N+1}}$ is a basis of $\mathcal{M}_{N}(p)$, and $\mathcal{M}_{N}(p)$ is isomorphic to the module $M(p)$ in Lemma 3.6. Moreover, the action on the basis $\left(v_{t}\right)_{0 \leq t<\ell^{N+1}}$ is given by formulas (33) and (34).

Indeed, there is a $\mathcal{D}_{\lambda, N}^{\geq 0}\left(\mathfrak{s l}_{2}\right)$-linear map $\mathbb{k}_{p} \rightarrow M(p)$ such that $1 \mapsto v_{0}$; it induces a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-linear map $\mathcal{M}_{N}(p) \rightarrow M(p)$, which is surjective by direct computation, and both modules have dimension ℓ^{N+1}.

Remark 4.3. Let V be a highest weight module of weight p. Then each proper submodule is contained in $\oplus_{t \neq p} V_{p}$; hence V has a maximal proper submodule \widehat{V} and V / \widehat{V} is a simple $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module, and at the same time a highest weight module of highest weight p.

Definition 4.4. Let $\mathcal{L}_{N}(p):=\mathcal{M}_{N}(p) / \widehat{\mathcal{M}_{N}(p)}$, that is, the simple highest weight module obtained as a quotient of $\mathcal{M}_{N}(p)$.

Proposition 4.5. (a) Let $0 \leq p<\ell^{N+1}$. Then

$$
\left\{v \in \mathcal{L}_{N}(p) \mid E^{[i]} v=0 \text { for all } 0 \leq i \leq N\right\}=\mathbb{k} v_{0} .
$$

(b) There exists a bijection between $\left\{p \mid 0 \leq p<\ell^{N+1}\right\}$ and the finite-dimensional simple modules of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ given by $p \mapsto \mathcal{L}_{N}(p)$.

Proof. (a) Let $v \in \mathcal{L}_{N}(p)-0$ be such that $E^{[i]} v=0$ for all $0 \leq i \leq N$. We may assume that v has weight t for some $0 \leq t<\ell^{N+1}$, since $E^{[i]}$ applies each eigenspace of the $\mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right)$ to another. Thus $v=a v_{n}$ for some $a \in \mathbb{k}^{\times}$and some $0 \leq n<\ell^{N+1}$, since each 1-dimensional summand in the decomposition $\mathcal{M}_{N}(p)=\oplus_{0 \leq n<\ell^{N+1}} \mathbb{k} v_{n}$ corresponds to a different eigenspace for the action of $\mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right) \simeq \mathbb{k}\left(\mathbb{Z}_{\ell}\right)^{N+1}$. As $\mathcal{L}_{N}(p)$ is simple, $\mathcal{L}_{N}(p)=\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) v$, but

$$
\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) v=\mathcal{D}_{\lambda, N}^{\leq 0}\left(\mathfrak{s l}_{2}\right) v=\mathcal{D}_{\lambda, N}^{\leq 0}\left(\mathfrak{s l}_{2}\right) v_{n} \subseteq \oplus_{n \leq m<\ell^{N+1}} \mathbb{k} v_{m} .
$$

Hence $n=p$ and the claim follows.
(b) Let \mathcal{L} be a simple $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module. As a $\mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right)$-module, $\mathcal{L}=\oplus \mathcal{L}_{t}$. We pick $v \in \mathcal{L}_{t}-0$. We may assume that $E^{[i]} v=0$ for all $0 \leq i \leq N$. Indeed, if $E^{[j]} v=0$ for $j=0, \ldots, i-1$ but $E^{[i]} v \neq 0$, let $n \geq 0$ be such that $w:=\left(E^{[i]}\right)^{n} v \neq 0$, $\left(E^{[i]}\right)^{n+1} v=0$. Then $n<\ell$ since $\left(E^{[i]}\right)^{\ell}=0$, and w satisfies $E^{[j]} w=0$ for $j=0, \ldots, i$ since $E^{[j]} E^{[i]}=E^{[i]} E^{[j]}$.

Now there exists a $\mathcal{D}_{\lambda, N}^{\geq 0}\left(\mathfrak{S l}_{2}\right)$-linear map $\widetilde{\phi}: \mathbb{k}_{t} \rightarrow \mathcal{L}, 1 \mapsto v$, which induces a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-linear map $\phi: \mathcal{M}_{N}(t) \rightarrow \mathcal{L}$ such that $1 \mapsto v$. As \mathcal{L} is simple, $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) v=\mathcal{L}$, so ϕ is surjective. Hence $\operatorname{ker} \phi \neq 0$ is a proper submodule of $\mathcal{M}_{N}(t)$ and $\mathcal{L} \simeq \mathcal{M}_{N}(t) / \operatorname{ker} \phi$ is simple. Thus $\mathcal{L} \simeq \mathcal{L}_{N}(t)$.

By (a), $\mathcal{L}_{N}(p) \not 千 \mathcal{L}_{N}(t)$ if $p \neq t$, and the claim follows.

§4.2. A tensor product decomposition

Proposition 4.6. (a) Let $0 \leq p<\ell^{N}$. Then

$$
\begin{equation*}
E^{[N]} \cdot v=F^{[N]} \cdot v=0, \quad K^{[N]} \cdot v=v, \quad \text { for all } v \in \mathcal{L}_{N}(p) \tag{39}
\end{equation*}
$$

Moreover, $\mathcal{L}_{N}(p) \simeq \mathcal{L}_{N-1}(p)$ as $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$-modules.
(b) Reciprocally, $\mathcal{L}_{N-1}(p)$ may be endowed of a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-action by extending the $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$-action via (39), and $\mathcal{L}_{N-1}(p) \simeq \mathcal{L}_{N}(p)$ as $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-modules.

Proof. (a) By the first equation of (33), $E^{[i]} v_{\ell^{N}}=0$ for all $0 \leq i \leq N$, so $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) v_{\ell^{N}}=\mathcal{D}_{\lambda, N}^{\leq 0}\left(\mathfrak{s l}_{2}\right) v_{\ell^{N}}=\oplus_{n \geq \ell^{N}} \mathbb{k} v_{n}$ is a proper submodule of $\mathcal{M}_{N}(p)$. Hence $v_{n}=0$ in $\mathcal{L}_{N}(p)$ for all $n \geq \ell^{\bar{N}}$, and $\mathcal{L}_{N}(p)$ is spanned by (the image of) $\left(v_{m}\right)_{0 \leq m<\ell^{N}}$. Thus (39) follows by this fact and (33)-(34).

By (39), $W \subset \mathcal{L}_{N}(p)$ is a $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$-submodule if and only if W is a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-submodule. Hence $\mathcal{L}_{N}(p)$ is simple as a $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$-module and the last statement follows.
(b) We have to check all the defining relations (28)-(32) of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$. Those not involving $E^{[N]}, F^{[N]}, K^{[N]}$ follow since $\mathcal{L}_{N-1}(p)$ is a $\mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)$-module, and relations $E^{[N]}, F^{[N]}, K^{[N]}$ follow easily except (32) for $j=N$. It is equivalent to (35), whose left-hand side acts by 0 on each v_{t}. For the right-hand side, if $1 \leq s \leq \ell^{N}-1$, then there exists $i<N$ such that $s_{i} \neq 0$, and as in the proof of Lemma 3.6, $\left\{\begin{array}{c}K ; 2 s \\ s\end{array}\right\} E^{\left(\ell^{j}-s\right)} \cdot v_{t}=0$, so the right-hand side of (35) acts by 0 on each v_{t}. Now $\mathcal{L}_{N-1}(p)$ is a highest weight module as a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module, with highest weight p, and simple at the same time, so $\mathcal{L}_{N-1}(p) \simeq \mathcal{L}_{N}(p)$ as $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ modules.

Remark 4.7. Thanks to the algebra map $\pi_{N}: \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$, every $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$ module is canonically a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module. In particular, each simple $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$ module $\mathcal{L}(p), 0 \leq p<\ell$ is a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module.

Lemma 4.8. Let $p=p_{N} \ell^{N}, 0 \leq p_{N}<\ell$. Then $\mathcal{L}_{N}(p) \simeq \mathcal{L}\left(p_{N}\right)$.
Proof. As π_{N} is surjective, W is a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-submodule of $\mathcal{L}\left(p_{N}\right)$ if and only if W is a $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-submodule. Thus $\mathcal{L}\left(p_{N}\right)$ is a simple $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module. Now

$$
E^{[i]} v_{0}=0, \quad K^{[i]} v_{0}=\lambda^{p_{N} \delta_{i N}} v_{0}, \quad \text { for all } 0 \leq i \leq N
$$

Hence $v_{0} \in \mathcal{L}\left(p_{N}\right)-0$ is a highest weight vector of weight $p=p_{N} \ell^{N}$ and the lemma follows by Proposition 4.5

Remark 4.9. Recall that $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is a $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-comodule algebra, so the category of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-modules is a module category over the category of $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-modules: given a $\mathfrak{u}_{\lambda}\left(\mathfrak{s l}_{2}\right)$-module \mathcal{M} and a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module $\mathcal{N}, \mathcal{M} \otimes \mathcal{N}$ is naturally a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module via ρ.

Finally we use Remark 4.9 to describe a tensor product decomposition of simple $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-modules.

Theorem 4.10. Let $p=p_{N} \ell^{N}+\widehat{p}$, where $0 \leq \widehat{p}<\ell^{N}, 0 \leq p_{N}<\ell$. Then

$$
\mathcal{L}_{N}(p) \simeq \mathcal{L}\left(p_{N}\right) \otimes \mathcal{L}_{N}(\widehat{p}) \quad \text { as } \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \text {-modules }
$$

Proof. Let v_{0}^{\prime}, $v_{0}^{\prime \prime}$ be highest weight vectors of $\mathcal{L}\left(p_{N}\right), \mathcal{L}_{N}(\widehat{p})$, respectively. We denote $L=\mathcal{L}\left(p_{N}\right) \otimes \mathcal{L}_{N}(\widehat{p})$. As $\mathcal{L}\left(p_{N}\right)$ is generated by $\left\{v_{t}^{\prime} \mid 0 \leq t<\ell\right\}$ as in (26), and $\mathcal{L}_{N}(\widehat{p})$ is generated by $\left\{v_{t}^{\prime \prime}=F^{[t]} v_{0}^{\prime \prime} \mid 0 \leq t<\ell^{N}\right\}$ (see Proposition 4.6), L is generated by $\left\{v_{t}=v_{t_{N}}^{\prime} \otimes v_{\widehat{t}}^{\prime \prime} \mid 0 \leq t=\widehat{t}+t_{N} \ell^{N}<\ell^{N+1}\right\}$. Given $F^{(m)} K^{(n)} E^{(p)} \in$ $B_{N}, 0 \leq m, n, p<\ell^{N+1}$, we may write
$F^{(m)} K^{(n)} E^{(p)}=F^{\left(m_{N} \ell^{N}\right)} K^{\left(n_{N} \ell^{N}\right)} E^{\left(p_{N} \ell^{N}\right)} F^{\left(m^{\prime}\right)} K^{\left(n^{\prime}\right)} E^{\left(p^{\prime}\right)}, \quad 0 \leq m^{\prime}, n^{\prime}, p^{\prime}<\ell^{N}$.
Here, $F^{\left(m^{\prime}\right)} K^{\left(n^{\prime}\right)} E^{\left(p^{\prime}\right)} \in \mathcal{D}_{\lambda, N-1}\left(\mathfrak{s l}_{2}\right)={ }^{\operatorname{co} \rho_{N}} \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$; cf. Proposition 3.8. Thus

$$
F^{(m)} K^{(n)} E^{(p)}(y \otimes z)=F^{\left(m_{N}\right)} K^{\left(n_{N}\right)} E^{\left(p_{N}\right)} y \otimes F^{\left(m^{\prime}\right)} K^{\left(n^{\prime}\right)} E^{\left(p^{\prime}\right)} z
$$

for all $y \in \mathcal{L}\left(p_{N}\right), z \in \mathcal{L}_{N}(\widehat{p})$, where we use (39). From here, $v_{0}=v_{0}^{\prime} \otimes v_{0}^{\prime \prime}$ is a primitive vector, and L is a highest weight module of highest weight p. Thus it suffices to prove that L is simple. Let W be a submodule of L. In particular, W is a $\mathcal{D}_{\lambda, N}^{0}\left(\mathfrak{s l}_{2}\right)$-submodule, so it decomposes as a direct sum of eigenspaces; each v_{t}, $0 \leq t<\ell^{N+1}$ spans the eigenspace of weight t, so we may assume that $v_{t} \in W$ for some t. Let t be minimal. Hence

$$
0=E^{[N]} v_{t}=E v_{t_{N}}^{\prime} \otimes v_{\hat{t}}^{\prime \prime}, \quad 0=E^{[j]} v_{t}=v_{t_{N}}^{\prime} \otimes E^{[j]} v_{\hat{t}}^{\prime \prime}, \quad 0 \leq j<N
$$

so $E v_{t_{N}}^{\prime}=0=E^{[j]} v_{\hat{t}}^{\prime \prime}, 0 \leq j<N$. From here, $t_{N}=\widehat{t}=0$, and then $W=L$.
Remark 4.11. Note that the algebra $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$ is an augmented algebra via the $\operatorname{map} \varepsilon: \mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathbb{k}$,

$$
\begin{equation*}
\epsilon\left(E^{[j]}\right)=\epsilon\left(F^{[j]}\right)=0, \quad \epsilon\left(K^{[j]}\right)=1, \quad \text { for all } 0 \leq j \leq N \tag{40}
\end{equation*}
$$

Thence \mathbb{k} is a $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$-module and $\mathbb{k} \simeq \mathcal{L}_{N}(0)$ via ϵ, so $\mathcal{L}_{N}(p) \simeq \mathcal{L}\left(p_{N}\right) \otimes \mathbb{k}$ if $p=p_{N} \ell^{N}, 0 \leq p_{N}<\ell$.

Acknowledgements

This work was partially supported by CONICET, Secyt (UNC), the MathAmSud project GR2HOPF and ANPCyT (Foncyt).

The main part of this paper was written during my visit to the Max Planck Institute in Bonn as an Alexander von Humboldt Fellow. I would like to thank the institute for its excellent working environment and support. I would like to thank especially Geordie Williamson for all the discussions and the guidance.

References

[A] N. Andruskiewitsch, Notes on extensions of Hopf algebras, Canad. J. Math. 48 (1996), 3-42. Zbl 0857.16033 MR 1382474
[AD] N. Andruskiewitsch and J. Devoto, Extensions of Hopf algebras, Algebra i Analiz 7 (1995), 22-61. Zbl 0857.16032 MR 1334152
[An] I. Angiono, A quantum version of the algebra of distributions of an algebraic group, in preparation.
[B] G. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218. Zbl 0326.16019 MR 0506890
[J] J. Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs 107, American Mathematical Society, Providence, RI, 2003. Zbl 1034.20041 MR 2015057
[L1] G. Lusztig, Some problems in the representation theory of finite Chevalley groups, Santa Cruz conference on finite groups (Univ. California, Santa Cruz, CA, 1979), Proceedings of Symposia in Pure Mathematics 37, American Mathematical Society, Providence, RI, 1980, 313-317. Zbl 0453.20005 MR 0604598
[L2] G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987), Contemporary Mathematics 82, American Mathematical Society, Providence, RI, 1989, 59-77. Zbl 0665.20022 MR 0982278
[L3] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser Boston, Boston, MA, 1993. Zbl 0788.17010 MR 1227098
[L4] G. Lusztig, On the character of certain irreducible modular representations, Represent. Theory 19 (2015), 3-8. Zbl 1316.20049 MR 3316914
[Mo] S. Montgomery, Hopf algebras and their actions on rings, CMBS Regional Conference Series in Mathematics 82, American Mathematical Society, Providence, RI,1993. Zbl 0793.16029 MR 1243637
[T1] M. Takeuchi, Generators and relations for the hyperalgebras of reductive groups, J. Algebra 85 (1983), 197-212. Zbl 0526.14031 MR 0723074
[T2] M. Takeuchi, Quotient spaces for Hopf algebras, Comm. Algebra 22 (1994), 2503-2523. Zbl 0801.16041 MR 1271619
[W1] G. Williamson, Schubert calculus and torsion explosion. With an appendix joint with A. Kontorovich and P. J. McNamara, J. Amer. Math. Soc. 30 (2017), 1023-1046. Zbl 06750373 MR 3671935
[W2] G. Williamson, Algebraic representations and constructible sheaves, Jpn. J. Math. 12 (2017), 211-259. Zbl 06788672 MR 3694932

[^0]: ${ }^{1}$ In Proposition 3.9 we shall prove that B_{N} is indeed a basis of $\mathcal{D}_{\lambda, N}\left(\mathfrak{s l}_{2}\right)$

